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A QUADRATIC-FORM ANALYSIS OF THE
COLLISIONLESS TEARING MODE

I. INTRODUCTION
The properties of the collisionless tearing instability in the neutral

1-16

sheet geometry have been studied extensively. A physical system in

wvhich the instability may be particularly relevant is the earth’s

7,10,13,14 1—3, the inertia of the current

magnetotail. In its classic form
carriers leads to the instability. The equations to describe the linear
behavior of the instability can be derived using the standard method of
characteristics. This yields integro-differential equations for the
perturbed quantities. In principle, the solution to these equations gives
a complete description of the linear collisionless tearing instability. In
practice, hovever, the equations are difficult to solve because evaluation
of complicated orbit integrals is required. Thus, the majority of previous
theoretical works have attempted to extract useful information without
‘. evaluating the orbit integrals exactly. These methods include energy

3,6,8 3,5,7,9,13,14

the use of approximate orbits, and

10

principles,
expansion of orbit integrals in velocity moments.

However, as the physical system of interest becomes more complex, the
approximate methods of evaluating the orbit integrals may become untenable.

For example, if ions have an anisotropic bi-Maxwellian distribution with an

isotropic electron distribution, then the large ion orbit contribution to

13

the instability is significant. In this case, the neutral sheet has to

be treated by a 3-region (as opposed to the conventional 2-region) matching

Manuscript approved August 28, 1987,
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technique. The straight-line orbit and constant-y approximations limit the §§
validity to relatively small ion anisotropy TL/TH < 1.5. If the fi
distribution function is highly non-Maxwellian, then these approximations aj
completely break down and the full integro-differential equations must be ;ﬁ
solved. In the problem treated by Holdren17, the equilibrium orbits and . ;g
orbit integrals for a relativistic neutral sheet were numerically %é
calculated using discretized variables. The integro-differential equation . gi
for the perturbed vector potential was then solved using an iterative ;:

scheme and the required numerics were substantial. More recently, Chen and

Lee15 provided an integro-differential treatment of collisionless tearing

NS
instability in a highly non-Maxwellian neutral sheet. In this work, the ﬂf
exact unperturbed particle orbits were wused analytically in the orbit i;
integrals. Using the Galerkin method,18 the integro-differential equation ig
for the perturbed vector potential was converted into a finite dimensional ég
matrix and solved to obtain the dispersion relation and the eigenmode HQ
structure. It was found that the eigenmode is strongly localized to a §%
region of the order of (;:oexp)l/2 at the null plane and that the eigenmode :ﬁi
is highly structured in this region, where Pe is the electron Larmor radius :i
in the asymptotic magnetic field and xp is the neutral sheet half- g&
thickness. For KkIB , the dispersion relation was found to have the general hé
form y/kve“ = (pe/xp)D where D is a function of temperatures only and Vell .f‘
is the electron thermal velocity along Eo’ the equilibrium magnetic field. ?&
For this problem, the wusual straight-line orbit and constant-y _ '§$
approximations would indeed have been invalid. Another point of interest “h
to note is that the contribution to the perturbed current density le(x) at . Té.
a given point x primarily comes from those axis-crossing orbits with :tﬁ
turning points at x. It is easier to calculate such contribution .‘?
accurately using analytic orbits than using discretized variables. ’;(

o
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In Ref. 15, due to the relative simplicity of the geometry, the orbit
integrals and matrix elements could be calculated independently of k and .
Thus, only minimal numerical calculations were required. However, in more
complex systems, the required computation may be more substantial, i.e.,
the matrix elements may have to be evaluated for each iteration for
different values of w/kv to determine the dispersion relation. In such
cases, it would be desirable to determine some overall stability properties
without extensive computation. In addition, if unstable, it would be
desirable to determine the 1lower and wupper bounds for the growth rate.
Such considerations have led to formulation of various energy principle
methods. For example, for ideal MHD, the energy principle method19 seeks
to determine the stability of a magnetized plasma by considering the
potential energy associated with perturbations of an equilibrium. For the
collisionless tearing mode, a number of energy principle analyses have been

3,6,8

performed. These methods generally provide the sufficient condition

for stability. In these works, approximate orbit integrals are used, or in

8 If, howvever, no valid

certain simple cases, no orbit integral is needed.
approximations are available for the necessary orbit integrals, then these
methods do not yield accurate results or estimates of growth rates.

In this paper, we consider another method which is analogous to energy
principle methods but which is more versatile. In the present method, we
evaluate the orbit integrals using the exact equilibrium orbits and no
trial functions are used. It generally yields a sufficient condition with
a lover and upper bounds for the growth rate for unstable systems.
However, the method can also be iterated to give accurate growth rates for
the unstable modes and the eigenfunctions.

The method depends on certain general features of the eigenmodes. One

important feature is that the eigenmodes are generally well localized. The

technique is potentially applicable to a wide variety of systems. The




basic ideas are simple and we first describe the method. The objective of
this paper is to provide a rigorous theoretical basis for the method. For
this purpose, we prove a number of general properties of the quadratic form
based on a self-adjoint integro-differential operator. We then illustrate
the technique by applying it to the collisionless tearing mode in a highly

non-Maxwellian neutral sheet that has been solved previously.

II. A Quadratic Form Formulation

In this section, we present the formalism for a quadratic-form method
for treating the collisionless tearing instabilities. Ve first describe
the general framework and then provide a specific application. For the
sake of concreteness, we will use a neutral sheet geometry. The method can
be applied to other configurations.

Figure 1 shows the magnetic field and the coordinate system. The
equilibrium magnetic field is given by §o(x) = Bz(x) é with Bz(—x) = -B(x)
and Bz =0 at x = 0. The current density is go(x) = Jo(x)i with Jo(-x) =
Jo(x). Because of pressure balance, the particle density no(x) and current
density Jo(x) are peaked about x = 0 with a characteristic half-thickness

of Xpe For |x| > x_, B, is nearly constant and the current density is much

P
smaller than for |x| < ;- The tearing instability in a neutral sheet can
be described by perturbations of the form (x,z,t) = ¥(x)exp(ikz - iwt),
vhere the wave vector k = k é is taken to be parallel to the equilibrium
magnetic field. We assume that all perturbations vanish as t » -o, 1In
this paper, we will neglect the scalar potential. The inclusion of the
scalar potential gives rise to another coupled integro-differential
equation whose basic character is similar to that of the equation to be

treated here. Thus, the present method can be generalized to include the

scalar potential in a straightforward manner. In reality, the neglect of

the scalar potential implies that high perturbation frequencies (|w| > wci)
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cannot be treated adequately, where Wi is the ion cyclotron frequency in 5&
the asymptotic magnetic field. BX
The Ampere’s law gives

2 '.a.

d 2 4n
;f-kwu>+;q¢n-o, (1 i

vhere the perturbed vector potential is Al = ¥(x,z,t)y and le is the )
perturbed current density. It is in evaluating le that one must evaluate e
orbit-integrals. These integrals may be regarded as linear operators e

acting on y. Thus ve can re-write Eq. (1) as G
(]
Ly = 0, (2) A

vhere L is an integro-differential operator to be determined for each "

specific problem. We can also define a quadratic form I by W'

Iolw = [ axd*ooLee | (3) 3

vhere ¢* is the complex conjugate of ¢. It is clear that Eq. (2) can be X
recovered by the variational principle requirement &I(yly) = O, which
automatically implies I(vw|y) = O. If we let ¢m be an eigenfunction of L :,

corresponding to the eigenvalue Am, then we can write

>
[}

(9,16, o8

@™ d¢ ™
- I dx| 522 -k . I dx¢' L , (4) i
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vhere £ is the linear operator describing the orbit integrals. Here, we
have used ¢m + 0 as |x| » = and assumed ¢m to be normalized to unity. Note
that the eignevalues depend on k and ® and that they are primarily
determined by the first and third terms of the above equation. However,

Eq. (2) can also be thought of as an eigenvalue equation Ly(x) = Ay(x),

vhere A = A(k, w). Equation (2) is then equivalent to setting A = O.

Thus, the dispersion relation can be obtained from

)\(k, W) = 0- (5)

In this paper, we will prove a number of mathematical properties of the
eigenvalues Xm and the integro-differential equation. These properties
will be used in a method to determine the stability conditicn for a given
system with respect 1o the tearing mode. It is an objective of this paper
to provide a sound theoretical basis for the method and to illustrate the
application.

Followving the treatment of Ref. 15, we use an equilibrium distribution

function of the form F V.P .)F”j(H“j), wvhere j = e, 1 and

= F .(H, -
1 1313 1'yj]
(Hlj’Pyj’ H”j) are the single-particle constants of motion. Here, Hlj =

2 2
(mj/Z)(vx + vy ), Pyj = mj;y
vector and HHj = (mj/Z) v,

Maxwellian with

+ (qj/c)A;(x) vhere A;(x) is the equilibrium

For simplicity, we will choose F“ to be

-1/2

j) exp(-H“/T”). (6)

Fs(H,) = (20T /m

For the species j, mj is the mass, qj is the charge and Vj is the mean

drift velocity in the y direction. In the remainder of the paper, we will

omit the species index j when no confusion results. Then, it can be
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shown ~ that the left-hand side of Eq. (1) can be written as an integro-

differential operator L given by

oF
d_‘k - k ¥ o+ 4ne ZB 'Jl(X)Jd VVy'éH—
dx
j
Syl - fox ( K (%% )+ Ky(x,x )] wix') )
3 j
Here, the kernels are given by
P, dH, v (V. (%) ,
(x,x ) = 1, ﬂh‘)“’(b P, —L— Y exp[—-inQ(t-t )] (8)
[V (x)v _(x )]
and
(v, (x)

TR

Ko (%% ) = Zr:&—(l . exp[-insz(t-t')] 9)
2 n T By) Lv (X)vx'(x')l

jH
where the orbital period is given by

T(HL’ Py) £ (10)

dx
[v, ) °
and
bn 2 (0 + nQ)/kvj“

Here, the integration is carried out over one complete cycle. The

! ’
coordinates (x , v ) represent the particle orbits in the equilibrium field

’ [

with the conditions &l(t' =t) = x and v (t

t) = v. The dispersion

functions are given by

T Y

c KPS
AR AN A )

[y
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<
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and

W(E) = 1 + EZ(E).

g

In the above expressions, vjI| is the thermal velocity of the species j v
¥

associated with the motion parallel to the equilibrium magnetic field. In '

deriving Eqs. (7), (8) and (9), we have used ‘ %

k‘
",
® Y
’ ’ . ’ . N
v (X u(x ) = Y ¢ (x)exp [inQ(t - t)] . (11) o
L'y,
n=0 ::
with o
ﬁ.‘
T .
’ ’
tn(x) = % I defv_(x Y¥(x )]exp[-inQ(t - T1)] (12) o)
0 X ")
v
where T = T(H,, P ) and -39
1 y ey
N
Y
Q= 2u/T(Hl, Py), :Ei
.
*N‘
with the orbital period T given by Eq. (10). ,§°
&
In writing Eq. (11), use has been made of the fact that an equilibrium q:
[ A
orbit can be thought of as a function of the present coordinates at t = t. 5}.
-y
The kernels Ky and Ky generally must be evaluated numerically. However,
-\
there is no need to follow equilibrium orbits. The velocity components can v
be evaluated analytically as functions of H and Py. In doing the velocity . Si,
o
space integration, all the equilibrium orbits are included exactly. :;
It is easy to see that the third term on the right hand side of Eq. (7) ) ::
is the so-called adiabatic term. The third and fourth terms combined give :}A
Loty
the perturbed current density. In deriving Eqs. (8) and (9), we have f*f
R0
IN'
NG
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included all harmonics of the orbital periods. However, the conventional
tearing mode corresponds to the n = 0 case. In this paper, we will also

set n = 0 henceforth for simplicity and restrict ourselves to the purely

growing mode, w = iy. o
:
III. A Non-Maxwellian Neutral Sheet "
ey
If we set n = 0 and w = iy, the operator L is self-adjoint since it is ;’
[] M
real and symmetric in x and x . Then, its eigenvalues are real and )\
L} .!
eigenfunctions can be chosen to be real and orthonormal without loss of
“
generality. Let ¢m(x) be such an eigenfunction with the eigenvalue Xm' .:A
Then, :}'
"
(e 1) = A A
.\
.-
¢ .2 2 oF "y
m 2 4ne 2 3 1 s
- de Cx ) -k Zejfdmm(x)Jd Wy 5, _
] v
N
W
4me o 1 1 ye
e ’ ’ ’ ’ |.
o }:—2 Idxdx ¢m(x)[(r]Kl(x,x ) + Kz(x,x )]¢m(x ), (13) '
. M, Ij 2
J ] -
:J‘
vhere we have used ¢m 2 0as |x|] -+ o Note that the dependence on m 4
occurs only through the eigenfunctions ¢m' Fﬁ
r ¥
Ve will demonstrate the following properties. We will first show that iy
the eigenvalue Am increases without bounds as y approaches -« for all m and ;;
k. Then, we will show that Am approaches an asumptotic value for each k >
o
and m as y approaches +» and that the asymptotic values are bounded from :%
above but not from below. We then prove that, for any finite value of v, .
)
there exist only a finite number of m values for which Xm is positive. L .
4
Ko
>
‘.‘]
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Ve nov prove that Xm % + o for all mas vy » - », First, we consider an
analytic continuation of Eq. (13) to vy < 0. The first three terms of Eq.
(13) have no explicit dependence on y. Equation (9) shows that the K, term
also has no y dependence if n = 0. Equation (8) shows that Ky depends on vy
through the dispersion function V. For large negative <y, we have the

asymptotic expression

V(LI——)~ - 2u1/27 exp(yz).

KVin

Therefore, as vy » -», we have ¥ + + o. 1In addition, K, can be re-written

as

v. (x) 42
]

' P _dH
Ky(x,x ) = W(b,) Jﬂ—¥——£[jax¢m(x) Tvi?;jT

vhere bo = w/kvj”. Since T 1is positive definite, the integral is positive
definite. Thus, we see Kl(x,x') %+ o in the limit v » - =, Because all

other terms in Eq. (13) are independent of y, we conclude that

lim A = 4o (14)
m
v -

for all m. In the other limit vy » + o, we see that Z(bo) + 0 and V(bo) 3>
+1 so that, for a given k, Xm reaches an asymptotic value for each m. 1In
practice, the dependence of +vy/kv becomes unimportant for y/kv > 4 where

2(4i) = 0.1. The large-vy asymptotic expression for Xm then becomes

- Jor () - 2 422 g foxdd [, B

B }'(‘ "
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2 P dH v_ ¢ (x),2
4ne 1 y 1
+ e L3 T Jd'r Flde I?: | ]
i ™ x

2 P dH, oF v. ¢ (x),2
4ne 1 y 1 1l m
* e Zm 2, rr 3 delvx l] (13)
3

It is clear that the asymptotic values of )h may be positive or negative.
It is of interest to note that if Fl and arl/anl are integrable at least in
the 8-function sense, then the asymptotic values of Am are bounded from
above. However, they need not be bounded from below since it is possible
to make the integral of (d¢m/dx)2 arbitrarily large by introducing
"wiggles". Since lim A -+ +» for all m, and Am can be negative for some m
as v * + @, it i;a—ZIear that some eigenvalues must cross zero. If the
zero-crossings occur for y > 0, then the eigenfunctions corresponding to A
= 0 provide the solutions to the tearing mode equation (2). The values of
v wvhere the crossings occur are the corresponding grovth rates.

Ve nov demonstrate an important property that for any finite v,
negative or positive, there are only finitely many positive eigenvalues Am.
For any given k and a finite vy, it is easy to see that only the first term
of Eq. (13) can be infinite. Thus, it is sufficient to show that there are
only finitely many m’s for which the quantity de(d’m/dx)2 is finite.

Let {uk(x)) be a complete set of basis functions. Then, we can write

$.(x) = L au(x). (16)
k=1

It is important to consider the nature of the eigenfunctions. We note that
Bq. (1) can be cast in the form of a Schroedinger equation with —k2 playing

the role of the energy of a particle in a potential well -(Au/c)le. For

[}
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the tearing mode problem at hand, the perturbed current is sharply peaked

at the magnetic null plane (x = 0). Thus, we seek bound state solutions of
Eq. (1) localized around x = 0. As a general remark, we note that the
equilibrium distributions are such that the current and particle densities
are localized near x = 0 with a characteristic half-thickness x, as
discussed earlier. Then, in the operator L, only the first two terms are
important [Eq. (7)]. For |x| » xp, the current density is essentially
zero and the perturbed eigenfunction vanishes exponentially. As a simple

model with these features, we use15

= (mn0/2u) (H - Vij -T

Fi5 51)

where Vj and Tj are constants and ny = no(O). This distribution is such
that ny(x) and J,(x) are constant for x| < X, and zero for |x| > X5 for

each species, where

2
xz i mV® + 2Tl

P lme;lo(vi - Ve)(qu)/cz

Here, q is the charge of the species. For this distribution function, Eq.

(1) can be solved exactly outside the plasma sheet (|x| > xp) to give

¥ = ¥(x,)expl-k( |X|-xp)l-
Thus, we can write
X

[ o -]

p ¢ .2
dex—"') + kqﬁ(xp).

X
p L]
Ve define g
X -
p A¢ .2 A
Ry = [ ox (52 a7
-X




Then, Am is finite if and only if Rm is finite. For simplicity, we treat
‘h as if it were entirely confined in the region (—xp, xp). Then, the

Fourier components for even ‘h are simply

uk(x) = d-l/zcos [léﬁx] (18)

Substituting Eq. (18) into Eq. (17), we obtain

2 [
Ry = (g) z k2amlcz' (19)
k=1

The orthonormality of the eigenfunctions ’m requires

Lagl-1, (20)
kel

for all m. In addition, ve have

L oag’ =1, (21)
m=1

for all k. This can be seen by noting that the matrix A = [aij} is such

that AAT = I from the orthonormality of eigenfunctions ’m' Since A is a

square matrix, AT is the inverse of A, 1i.e., A is an orthogonal matrix.

Then, BEq. (21) follows. PFrom Eqs. (19) and (20), we see Rm > (lt/d)2 for ':'::"f

. all m with Rlll = (lt/d)2 if and only if a = 1 and Ak ™ 0 for all k # 1. 0:‘0:‘%
Ve nov prove that there exist only finitely many m for which Rm is '- -

finite. Consider a set S of all finite Rm. Define the following ':"'

quantities ke
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so that Rm = Rm + QN' Because the sequence Rm converges to Rm as N & =,

]
Bt
-

we see that for any Rm € S and any arbitrary € > 0, there exists a finite

integer Nm such that QN < ¢ for all N > Nm. Now, consider a finite subset

SH of S such that SH has M elements. Let <Rm>H be the average value of the

elements of SH‘ Then, by denoting the elements of SM bym=1,... M, ve

have

M
1
ROy = if ) R

M N
1 2. 2
=5 L Ikay” + g Loy
m=1 k=1 m=1
Here, for any € > 0, N is chosen such that QN is less than ¢ for all Rm in

SH' Interchanging m- and k- summations and summing over m to infinity, we

obtain

N ®
1 2 2
ROy <§ LKL ay” + <oy
k=1 m=1
vhere <QN>M is the average over SH' Then, using Eq. (21) and carrying out
the k-summation, we have

<R >
m

1 N(N-2)(2N-1)
M<N 6 + <O’y

. - -n-
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i
for all Rlll in SH' Clearly for any €, it is easy to show <QN>H < €by _gs
induction. Ve can choose £ < (u/d)z. Now, we suppose S has infinitely . ?
many elements. Then, we can take the limit M » ., Recall that Rm 2 (u/d)2 'f;
for all m. %&2

. Therefore, ;iz <Rm>H > (n/d)z. However, the inequality (22) shows that i%t
lim R >y < QR < € < (d)? )
Mo e '.i

%
This is a contradiction due to the supposition that M is infinite. Sﬁf
Therefore, S cannot have infinitely many elements. q};

The properties of Xm described above suggest a practical method for t%;
assessing stability of a neutral sheet when detailed computation is time- fé&
consuming. First, compute the positive eigenvalue spectrum at y = O. éﬁ
Suppose there are ny positive eigenvalues. Next, compute the positive '§~
eigenvalue spectrum at a large vy = Y, with n, positive eignevalues. If ny ‘ﬁi
and n, are not equal, then there are at least |n2 - nll values of v > 0 for 2*:
vhich Eq. (2) is satisfied. That is, there are at least |n2 -~ n1| unstable ék:
modes. This method would be particularly useful when evaluation of kernels rﬁ
for each value of k and w is numerically prohibitive. In cases where some ;f
numerical computation is still practical, the above procedure can be g :
iterated by considering successively smaller intervals Ay = (72 - yl). %@
From Eqs. (3) and (17), we see that there can be only a finite number of m 4
such that Am is finite for finite . In particular, there can be only S;:

. finitely many positive Xm for vy = 0. There are infinitely many m such that r :
Am's cross zero for y < 0. That is, there are infinitely many stable modes Tﬁ

and only a finite number of stable modes. It is also clear that if the -??
dimensionality of the matrix is large enough, the values of the positive .S
eigenvalues are not significantly affected by the dimensionality of the 9“

matrix. That is, we only need to solve a finite dimensional eigenvalue ‘ﬁ

s :t:':

4
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equation. Thus, Eq. (2) can be reduced to a finite dimensional matrix
equation to find all the unstable modes, if the system is unstable. If Ay

can be made sufficiently small, then we obtain the growth rate and the

eigenmode structure accurately.

IV. Summary and Discussion e

We have described a quadratic-form method which may be useful for

studying the linear collisionless tearing mode stability of a neutral sheet ; gi
in cases where the complicated orbit integrals make it impractical to ?ﬂ
calculate the eigenmode structures. Ve have provided the necessary -
mathematical justification. This method may be iterated, where practical, '%
to provide a necessary and sufficient condition regarding the stability of f;
a complicated system and, if unstable, the growth rates. ?d
In this paper, we have used a mathematically tractable distribution ﬁ}
function. However, the basic conclusions of the paper are not limited to E§
the idealized model. In the example given above, the kernels Ky and K, 5;
depend on the standard dispersion functions Z and VW because of the }az
Maxvellian distribution in H“. As a result, the asymptotic behavior of Ky J&
and K, for vy * + ®= can be determined readily. Similar asymptotic behavior 4&3
occurs in other systems in which the distribution functions are not ;&;
Maxwvellian in H,. It has been shown that the behavior of the eigenvalues ;':
A, is determined by the quantity R [Eq. (17)]. Ve have shown that R_is "
finite only for a finite number of m. This behavior is due to the fact CE
that eigenfunctions ’m are localizable to a finite region, which in this éﬁ
case, is the magnetic null region. Thus, the properties of I(¢m|¢m) which : ESﬁ
are necessary for the method can be generalized to a wide variety of i{i
systems. Ve expect that the present quadratic-form technique can be used ‘ eg
to analyze more realistic physical systems. In this paper, ve have shown ég
how the necessary properties must be assessed for application to a given -
system. $~:
4 =4
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